python大数据需要学什么
1个回答
展开全部
1、需求---->算法
算法-->独自存在 解决问题的思想
特性:
输入性
输出性
有穷性
确定性
可行性
2、基本运算总数 ---->效率
3、问题规模N
T(N) ---N (数学概念:渐进函数)
时间复杂度---"O"
最优时间复杂度
最坏时间复杂度(重点)
平均时间复杂度
4、时间复杂度计算规则
1、常数项 操作 ---O(1)
2、顺序结构 累和
3、循环结构 累积
4、分支结构 取时间复杂度最高
5、最坏时间复杂度(未说明)
6、只取最高次项 其他忽略
5、空间复杂度---了解就行
6、时间复杂度消耗时间的排序
O(1) < O(logn) < O(n) <O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)
7、对Python中list操作分析---->各个操作效率不同(时间复杂度不同)
工具模块 :timeit
创建对象:timeit.Timer()
参数:
1、测试代码段
2、导入语法
3、计时器(平台相关)
返回值:
time对象
调用方法:time.timeit()
参数:
1、设置测试次数
返回值:
时间(秒数 float类型)
8、list dict操作时间复杂度剖析
9、数据结构
概念:数据元素之间的关系
数据结构是算法的载体
共同构成一个程序
抽象数据类型(ADT)
插入 删除 修改 查找 排序
10、顺序表---属于线性表
连续内存,存储形式
1、直接存储数据(数据类型相同)
2、元素外置(存储元素的对应地址)
千锋Python的课程推荐你去试听一下
算法-->独自存在 解决问题的思想
特性:
输入性
输出性
有穷性
确定性
可行性
2、基本运算总数 ---->效率
3、问题规模N
T(N) ---N (数学概念:渐进函数)
时间复杂度---"O"
最优时间复杂度
最坏时间复杂度(重点)
平均时间复杂度
4、时间复杂度计算规则
1、常数项 操作 ---O(1)
2、顺序结构 累和
3、循环结构 累积
4、分支结构 取时间复杂度最高
5、最坏时间复杂度(未说明)
6、只取最高次项 其他忽略
5、空间复杂度---了解就行
6、时间复杂度消耗时间的排序
O(1) < O(logn) < O(n) <O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)
7、对Python中list操作分析---->各个操作效率不同(时间复杂度不同)
工具模块 :timeit
创建对象:timeit.Timer()
参数:
1、测试代码段
2、导入语法
3、计时器(平台相关)
返回值:
time对象
调用方法:time.timeit()
参数:
1、设置测试次数
返回值:
时间(秒数 float类型)
8、list dict操作时间复杂度剖析
9、数据结构
概念:数据元素之间的关系
数据结构是算法的载体
共同构成一个程序
抽象数据类型(ADT)
插入 删除 修改 查找 排序
10、顺序表---属于线性表
连续内存,存储形式
1、直接存储数据(数据类型相同)
2、元素外置(存储元素的对应地址)
千锋Python的课程推荐你去试听一下
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询