2个回答
展开全部
y =(1-2^x)/(2^x+1)
∵ 2^x 定义域为 (-∞,+∞) ,且:2^x > 0 ,分母:2^x+1>1
∴函数定义域为:(-∞,+∞)
2^x+1>1,值域为:(1,+∞),故:
-1<y=(1-2^x)/(2^x+1) =(2-(1+2^x))/(2^x+1) = 2/(2^x+1) -1≤2/1-1=1
y =(1-2^x)/(2^x+1) 值域为: (-1,1]
y=(1-2^x)/(2^x+1) = 2/(2^x+1) - 1
2^x+1 = 2/(y+1)
x= log(2) [2/(y+1) -1]
反函数:y= log(2) [2/(y+1) -1]
定义域为: (-1,1]
∵ 2^x 定义域为 (-∞,+∞) ,且:2^x > 0 ,分母:2^x+1>1
∴函数定义域为:(-∞,+∞)
2^x+1>1,值域为:(1,+∞),故:
-1<y=(1-2^x)/(2^x+1) =(2-(1+2^x))/(2^x+1) = 2/(2^x+1) -1≤2/1-1=1
y =(1-2^x)/(2^x+1) 值域为: (-1,1]
y=(1-2^x)/(2^x+1) = 2/(2^x+1) - 1
2^x+1 = 2/(y+1)
x= log(2) [2/(y+1) -1]
反函数:y= log(2) [2/(y+1) -1]
定义域为: (-1,1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询