设等差数列{an}的前n项和为Sn,若a1>0,且S5=S18,则Sn取得最大值时的n值为多少?
1个回答
展开全部
由题意S5=S18得:5a1 + 10d = 18a1 + 153d
∴a1=-11d
∵a1>0 ,即:-11d>0
∴d<0
Sn=na1 + nd(n-1)/2 = -11nd + n^2d/2 - nd/2 = n^2d/2 - 23nd/2
=(d/2)(n^2 - 23n)=(d/2)[n^2 - 23n + (23/2)^2 - (23/2)^2]
=(d/2)[(n - 23/2)^2 - (23/2)^2] (可以将其看作一个二次函数求极值)
∵d<0
∴当n=11或n=12时,Sn取最大值
∴a1=-11d
∵a1>0 ,即:-11d>0
∴d<0
Sn=na1 + nd(n-1)/2 = -11nd + n^2d/2 - nd/2 = n^2d/2 - 23nd/2
=(d/2)(n^2 - 23n)=(d/2)[n^2 - 23n + (23/2)^2 - (23/2)^2]
=(d/2)[(n - 23/2)^2 - (23/2)^2] (可以将其看作一个二次函数求极值)
∵d<0
∴当n=11或n=12时,Sn取最大值
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询