设集合A={1,2,3……,10},则集合A的所有非空子集元素和的和
解:(1)先把元素1抽出剩下的9个元素组成的集合含有2^9个子集,包括空集而以上2^9个子集和元素1组合(含空集),又构成了集合A的所有非空子集中含元素1的非空子集即:在...
解:(1)先把元素1抽出
剩下的9个元素组成的集合含有2^9个子集,包括空集
而以上2^9个子集和元素1组合(含空集),又构成了集合A的所有非空子集中含元素1 的非空子集
即:在集合A的所有非空子集中,元素1出现了2^9次
(2)同理,在集合A的所有非空子集中,元素2、3、4、5、6、7、8、9、10都出现了2^9次
(3)故:集合A的所有非空子集元素和的和为:
(1+2+3+4+5+6+7+8+9+10)×2^9=55×2^9=55×512=28160
这个答案很详细了,但是“而以上2^9个子集和元素1组合(含空集),又构成了集合A的所有非空子集中含元素1 的非空子集”这句话有些不太好理解,大家可以帮我讲解一下吗?最好有举例的,谢谢了!! 展开
剩下的9个元素组成的集合含有2^9个子集,包括空集
而以上2^9个子集和元素1组合(含空集),又构成了集合A的所有非空子集中含元素1 的非空子集
即:在集合A的所有非空子集中,元素1出现了2^9次
(2)同理,在集合A的所有非空子集中,元素2、3、4、5、6、7、8、9、10都出现了2^9次
(3)故:集合A的所有非空子集元素和的和为:
(1+2+3+4+5+6+7+8+9+10)×2^9=55×2^9=55×512=28160
这个答案很详细了,但是“而以上2^9个子集和元素1组合(含空集),又构成了集合A的所有非空子集中含元素1 的非空子集”这句话有些不太好理解,大家可以帮我讲解一下吗?最好有举例的,谢谢了!! 展开
2010-09-24
展开全部
【那家伙不会说话。。。。】
解:1出现的次数等于与2到9的子集结合的次数,2到9的子集当然包括 空集。。
先从简单的说起,如:求{1,2,3}中:所有非空子集元素和的和
解 :“1”出现了:{1}、{1,2},{1,3},{1,2,3}
共四次 。即为“2,3”两数的子集个数:2^2=4。
{1}中空集不表示。。。。。。
【你子集个数会求吗?是(2^n)个】
所以 {1,2,3……,10}中每个数出现了2^9次
列示为: 1*2^9+2*2^9+……+10*2^9=(1+2+……+10)*2^9 =28160
解:1出现的次数等于与2到9的子集结合的次数,2到9的子集当然包括 空集。。
先从简单的说起,如:求{1,2,3}中:所有非空子集元素和的和
解 :“1”出现了:{1}、{1,2},{1,3},{1,2,3}
共四次 。即为“2,3”两数的子集个数:2^2=4。
{1}中空集不表示。。。。。。
【你子集个数会求吗?是(2^n)个】
所以 {1,2,3……,10}中每个数出现了2^9次
列示为: 1*2^9+2*2^9+……+10*2^9=(1+2+……+10)*2^9 =28160
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询