已知(ab-2)的绝对值与(a-1)的绝对值互为相反数,求下列式子的值。
1/ab+1/(a+2)*(b+2)+.........+1/(a+2006)*(b+2006)....
1/ab+1/(a+2)*(b+2)+.........+1/(a+2006)*(b+2006).
展开
2个回答
展开全部
解:因为|(ab-2)|与|(a-1)|互为相反数,所以得
|(ab-2)|+|(a-1)| = 0
所以 ab-2=0 a-1=0
解得a=2 a=1
所以 1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+........+1/(a+2006)(b+2006)
=1/(1*2)+1/(2*3)+........+1/(2007*2008)
=1-1/2+1/2-1/3+..........+1/2007-1/2008
=1-1/2008
=2007/2008
|(ab-2)|+|(a-1)| = 0
所以 ab-2=0 a-1=0
解得a=2 a=1
所以 1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+........+1/(a+2006)(b+2006)
=1/(1*2)+1/(2*3)+........+1/(2007*2008)
=1-1/2+1/2-1/3+..........+1/2007-1/2008
=1-1/2008
=2007/2008
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询