如图,在梯形ABCD中,AD平行BC,E是边CD的中点,AE与BC的延长线交于点F

判断S△ABF和S梯形ABCD有何关系,并说明理由;判断S△ABE和S梯形ABCD有何关系,并说明理由。两个问题~... 判断S△ABF和S梯形ABCD有何关系,并说明理由;
判断S△ABE和S梯形ABCD有何关系,并说明理由。
两个问题~
展开
世翠巧Po
高赞答主

2010-09-18 · 大脑停止不了思考
知道大有可为答主
回答量:1.6万
采纳率:92%
帮助的人:8156万
展开全部
∵AD‖BF
∴∠ADE=∠FCE
⊿ADE⊿FCE中
∵∠ADE=∠FCE,∠AED=∠FEC,DE=CE
∴⊿ADE≌⊿FCE
∴AE=FE
∵⊿ABF面积=四边形ABCE面积+⊿FCE面积
梯形ABCD面积=四边形ABCE面积+⊿ADE面积
∴⊿ABF面积=梯形ABCD面积
∵⊿ABE和⊿BEF等底等高(底:AE=FE
∴⊿ABE面积=梯形ABCD面积 ÷2
创远信科
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创... 点击进入详情页
本回答由创远信科提供
我不是我是她
2012-09-18 · TA获得超过748个赞
知道答主
回答量:143
采纳率:0%
帮助的人:48万
展开全部
解:(1)证△ADE全等于△FCE(ASA)或(AAS)
∵⊿ABF面积=四边形ABCE面积+⊿FCE面积
梯形ABCD面积=四边形ABCE面积+⊿ADE面积
∴⊿ABF面积=梯形ABCD面积

(2)由(1)得△ADE≌△FCE,
∴AE=EF,
∴BE是AF的中点
∴△ABE的面积为△ABF的一半,
∵ABF的面积与梯形ABCD的相等,
∴S△ABE=12S梯形ABCD;

(3)上述结论对一般梯形仍然成立.
根据上面解题的步骤可以看出并没有用到有关腰长相等的性质,对于一般的梯形仍然成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式