根号下1+x^2怎么积分?
1个回答
展开全部
利用第二积分换元法,令x=tanu,则
∫√(1+x²)dx
=∫sec³udu=∫secudtanu
=secutanu-∫tanudsecu
=secutanu-∫tan²usecudu
=secutanu-∫sec³udu+∫secudu
=secutanu+ln|secu+tanu|-∫sec³udu,
所以∫sec³udu=1/2(secutanu+ln|secu+tanu|)+C,
从而∫√(1+x²)dx=1/2(x√(1+x²)+ln(x+√(1+x²)))+C
积分:
积分都满足一些基本的性质,在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询