高一数学,关于函数,很需要有高人相助,在线等。。。
已知函数f(x)的定义域为(-2,2),f(x)的定义域上单调递减且为奇函数,则不等式f(x-1)+f(3-2x)≤0的解集为?...
已知函数f(x)的定义域为(-2,2),f(x)的定义域上单调递减且为奇函数,则不等式f(x-1)+f(3-2x)≤0的解集为?
展开
9个回答
展开全部
f(x)=-f(-x)
f(x-1)+f(2x-3)≤0
即f(x-1)≤-f(2x-3)=f(3-2x)
又y=f(x)在定义域(-2,2)上单调递减
有-2<x-1<2 -1<x<3
-2<2x-3<2 1/2<x<5/2
x-1≥3-2x x≥4/3
所以:4/3≤x<5/2
f(x-1)+f(2x-3)≤0
即f(x-1)≤-f(2x-3)=f(3-2x)
又y=f(x)在定义域(-2,2)上单调递减
有-2<x-1<2 -1<x<3
-2<2x-3<2 1/2<x<5/2
x-1≥3-2x x≥4/3
所以:4/3≤x<5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先求x-1和3-2x在定义域(-2,2)内的解集(-1,5/2)
首先必须满足这个条件
再来 移项 f(x-1)<=-f(3-2x)
因为是奇函数 所以-f(3-2x)=f(2x-3)
所以原式就变成f(x-1)<=f(2x-3)
因为是单调递减
只需满足x-1>=2x-3 就可以使不等式成立
可得x<=2 结合一开始的解集 终解是(-1,2]
首先必须满足这个条件
再来 移项 f(x-1)<=-f(3-2x)
因为是奇函数 所以-f(3-2x)=f(2x-3)
所以原式就变成f(x-1)<=f(2x-3)
因为是单调递减
只需满足x-1>=2x-3 就可以使不等式成立
可得x<=2 结合一开始的解集 终解是(-1,2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
拜托,都是些什么人乱回答。
3L 正解
其他人不要乱回答好不好
记得不清楚就不要乱搞
楼上 你不等式什么水平,还能算错?
你高一,那就没学过值域吧。
3L的回答
(x-1)∈(-2,2),(3-2x)∈(-2,2)
解得:x∈(0.5,2.5)
上面的就是说
-2<x-1<2
-2<3-2x<2
解得:0.5<x<2.5
3L 正解
其他人不要乱回答好不好
记得不清楚就不要乱搞
楼上 你不等式什么水平,还能算错?
你高一,那就没学过值域吧。
3L的回答
(x-1)∈(-2,2),(3-2x)∈(-2,2)
解得:x∈(0.5,2.5)
上面的就是说
-2<x-1<2
-2<3-2x<2
解得:0.5<x<2.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
奇函数
f(x)=-f(-x)
f(x-1)=-f(-x-1)
-f(-x-1)+f(3-2x)≤0
f(3-2x)≤f(-x-1)
因为单调递减
3-2x≥-x-1,x≤4
又-2≤x≤2,-2≤x-1≤2,-2≤3-2x≤2
所以1/2≤x≤5/2,
所以原不等式的解集是1/2≤x≤5/2
f(x)=-f(-x)
f(x-1)=-f(-x-1)
-f(-x-1)+f(3-2x)≤0
f(3-2x)≤f(-x-1)
因为单调递减
3-2x≥-x-1,x≤4
又-2≤x≤2,-2≤x-1≤2,-2≤3-2x≤2
所以1/2≤x≤5/2,
所以原不等式的解集是1/2≤x≤5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/2到2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询