高中数学题!急用!
1/a+1/b+n/(a,b)的最小公倍数=1/(a,b)的最大公约数求:当N=2007N=2010时,所有a和b的值(a,b均为正整数)...
1/a+1/b+n/(a,b)的最小公倍数=1/(a,b)的最大公约数
求 : 当N=2007
N=2010 时,所有a和b的值(a,b均为正整数) 展开
求 : 当N=2007
N=2010 时,所有a和b的值(a,b均为正整数) 展开
1个回答
展开全部
以[a,b],(a,b)分别表示a,b的最小公倍数和最大公因数.
解:
利用[a,b](a,b)=ab转化条件:
1/a+1/b+n/[a,b]=1/(a,b)
(a+b)/ab+n(a,b)/ab=1/(a,b)
a+b+n(a,b)=[a,b]
记(a,b)=d,则
a/d+b/d+n=(a/d)*(b/d),
(a/d-1)(b/d-1)=n+1,
对于n=2007上式成为:
(a/d-1)(b/d-1)=2008=8*251=1*2008
故a/d=2,b/d=2009或者a/d=2009,b/d=2以及
a/d=9,b/d=252或者a/d=252,b/d=9(此二组舍去,因为a/d,b/d互质)
所以a,b的全部值为:
a=2d,b=2009d或者a=2009d,b=2d,其中d是任意正整数.
对于n=2010可得
(a/d-1)(b/d-1)=2011,2011是质数.
故a/d=2,b/d=2012或a/d=2012,b/d=2均不符合互质要求.此时无解。
解:
利用[a,b](a,b)=ab转化条件:
1/a+1/b+n/[a,b]=1/(a,b)
(a+b)/ab+n(a,b)/ab=1/(a,b)
a+b+n(a,b)=[a,b]
记(a,b)=d,则
a/d+b/d+n=(a/d)*(b/d),
(a/d-1)(b/d-1)=n+1,
对于n=2007上式成为:
(a/d-1)(b/d-1)=2008=8*251=1*2008
故a/d=2,b/d=2009或者a/d=2009,b/d=2以及
a/d=9,b/d=252或者a/d=252,b/d=9(此二组舍去,因为a/d,b/d互质)
所以a,b的全部值为:
a=2d,b=2009d或者a=2009d,b=2d,其中d是任意正整数.
对于n=2010可得
(a/d-1)(b/d-1)=2011,2011是质数.
故a/d=2,b/d=2012或a/d=2012,b/d=2均不符合互质要求.此时无解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询