齐次线性方程组只有零解和有非零解的意思是什么意思?

汽车之路w
高粉答主

2020-06-24 · 关注我不会让你失望
知道大有可为答主
回答量:1.2万
采纳率:100%
帮助的人:298万
展开全部

零解:在微分方程理论中,指x(t)=0的解。讨论微分方程解得稳定性问题时,通常研究零解的稳定性。

非零解:在微分方程理论中,指x(t)≠0齐次线性方程组有非零解的条件。

定理:一个齐次线性方程组有非零解的充分且必要条件是:它的系数矩阵的秩r小于它的未知量的个数n。

齐次线性方程组只有零解的条件:矩阵的秩=未知量的个数;系数矩阵列满秩;系数矩阵的列向量组线性无关,满足以上三个条件中的一个就只有零解。

扩展资料

齐次线性方程组解的结构

齐次线性方程组说的是方程组右侧的向量(b1,b2,…,bn)(b1,b2,…,bn)都是0时的方程组。那么显然,齐次线性方程组的秩与其系数矩阵的秩肯定是相等的,也就是说它肯定有解。

定理2:齐次线性方程组有非零解的条件:齐次线性方程组有非零解的充要条件:r(A)<nr(A)<n.2

齐次线性方程组还有两个非常重要的性质:

(1)两个解的和还是方程组的解

(2)一个解的倍数还是方程组的解

上面两个性质综合起来,就是说,对于齐次线性方程组,任意解的线性组合还是解。

齐次线性方程组的一组解η1,η2,…,ηtη1,η2,…,ηt是它的基础解系,如果满足下列两个条件:

(1)该齐次线性方程组的任何一个解都能表示成η1,η2,…,ηtη1,η2,…,ηt的线性组合;

(2)η1,η2,…,ηtη1,η2,…,ηt线性无关;

齐次线性方程组的基础解系的个数是n−r(A)n−r(A). 这样,就了解了齐次线性方程组的结构:任意解都是它的基础解系的线性组合。

白雪忘冬
高粉答主

2020-06-24 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376626

向TA提问 私信TA
展开全部

齐次线性方程组只有零解:说明只有唯一解且唯一解为零(因为零解必为其次线性方程组的解),即A的秩r(A)=未知数的个数n ,A为列满秩矩阵。齐次线性方程组有非零解,即有无穷多解,的秩 小于未知数的个数n。

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

扩展资料

1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。

齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

4、n元齐次线性方程组有非零解充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。(克莱姆法则

参考资料来源:百度百科-齐次线性方程组

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
b_j_l2008
推荐于2017-09-03 · TA获得超过170个赞
知道答主
回答量:64
采纳率:0%
帮助的人:42.4万
展开全部
齐次线性方程组只有零解:说明只有唯一解且唯一解为零(因为零解必为其次线性方程组的解),即A的秩r(A)=未知数的个数n <=>A为列满秩矩阵
齐次线性方程组有非零解:即有无穷多解<=>A的秩 小于未知数的个数n

参考资料: 《空间解析几何与线性代数》 丁效华 孙振绮 主编 机械工业出版社出版

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lp84634
2010-09-19
知道答主
回答量:4
采纳率:0%
帮助的人:0
展开全部
晕,只有零解就是所有的根全为零,有非零解就是所有的解不全为零
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式