在三角形ABC中,交A,B,C,所对边分别为a,b,c,求证:a^2-b^2/c^2=sin(A-B)/sinC

tanton
2010-09-18 · TA获得超过4万个赞
知道大有可为答主
回答量:3019
采纳率:66%
帮助的人:1738万
展开全部
证明:在三角形ABC中,角A,B,C的对边a,b,c,
所以sin`A/sinC = a/c,sinB/sinC = b/c
因此(a^2-b^2)/c^2=[sin^2(A)-sin^2(B)]/sin^2(C)
=[1/2(1-cos2A)-1/2(1-cos2B)]/sin^2(C)
=1/2(cos2B-cos2A)/sin^2(C)
=1/2[-2sin(B+A)sin(B-A)]/sin^2(C)
=sin[180-(B+A)]sin(A-B)/sin^2(C)
=sinCsin(A-B)/sin^2(C)
=sin(A-B)/sinC
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式