为什么1/n发散,1/n2收敛?
1个回答
展开全部
原因如下:
当p>1时,p级数收敛;当1≥p>0时,p级数发散。
形如1+1/2^p+1/3^p+…+1/n^p+…(p>0)的级数称为p级数。
当p=1时,得到著名的调和级数:1+1/2+1/3+…+1/n+…。p级数是重要的正项级数,它是用来判断其它正项级数敛散性的重要级数。
交错p级数:形如1-1/2^p+1/3^p-1/4^p+…+(-1)^(n-1)*1/n^p+…(p>0)的级数称为交错p级数。交错p级数是重要的交错级数。
柯西收敛准则:
关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收敛的定义方式很好的体现了数学分析的精神实质。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询