无穷小的比较是怎么样的?
1个回答
展开全部
无穷小的比较是两个数都是无穷小,可以比较相对大小。无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数,序列等形式出现,无穷小量即以数0为极限的变量,无限接近于0。
确切地说,当自变量x无限接近x0或x的绝对值无限增大时,函数值fx与0无限接近,即fx,0或fx等于0,则称fx为当x,x0或x,∞时的无穷小量,特别要指出的是,切不可把很小的数与无穷小量混为一谈。
无穷小的性质
无穷小量不是一个数,它是一个变量,零可以作为无穷小量的唯一一个常量,无穷小量与自变量的趋势相关,若函数在某的空心邻域内有界,则称g为当时的有界量。
有限个无穷小量之和仍是无穷小量,有限个无穷小量之积仍是无穷小量,有界函数与无穷小量之积为无穷小量,特别地,常数和无穷小量的乘积也为无穷小量,恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询