求解释“拉格朗日乘数原理”

就是解释一下什么叫做“拉格朗日乘数原理”及其用途... 就是 解释一下什么叫做“拉格朗日乘数原理”及其用途 展开
 我来答
匿名用户
推荐于2016-12-02
展开全部
拉格朗日乘数原理(即拉格朗日乘数法)由用来解决有约束极值的一种方法。
有约束极值:举例说明,函数 z=x^2+y^2 的极小值在x=y=0处取得,且其值为零。如果加上约束条件 x+y-1=0,那么在要求z的极小值的问题就叫做有约束极值问题。
上述问题可以通过消元来解决,例如消去x,则变成
z=(y-1)^2+y^2
则容易求解。
但如果约束条件是(x+1)^2+(y-1)^2-5=0,此时消元将会很繁,则须用拉格朗日乘数法,过程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f对x的偏导=0
f对y的偏导=0
f对k的偏导=0
解上述三个方程,即可得到可让z取到极小值的x,y值。

http://ftp.haie.edu.cn/RESOURCE/CZ/CZSX/SXBL/SXTS1045/3251_SR.HTM
www.gtyamv.com
庞雅彤D8
2007-01-18 · TA获得超过224个赞
知道答主
回答量:80
采纳率:0%
帮助的人:0
展开全部
拉格朗日乘数原理(即拉格朗日乘数法)由用来解决有约束极值的一种方法。
有约束极值:举例说明,函数 z=x^2+y^2 的极小值在x=y=0处取得,且其值为零。如果加上约束条件 x+y-1=0,那么在要求z的极小值的问题就叫做有约束极值问题。
上述问题可以通过消元来解决,例如消去x,则变成
z=(y-1)^2+y^2
则容易求解。
但如果约束条件是(x+1)^2+(y-1)^2-5=0,此时消元将会很繁,则须用拉格朗日乘数法,过程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f对x的偏导=0
f对y的偏导=0
f对k的偏导=0
解上述三个方程,即可得到可让z取到极小值的x,y值。

拉格朗日乘数原理在工程中有广泛的应用,以上只简单地举一例,更复杂的情况(多元函数,多限制条件)可参阅高等数学教材。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友47033228d
2007-01-18 · TA获得超过5059个赞
知道大有可为答主
回答量:3057
采纳率:20%
帮助的人:1530万
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式