微积分题

数论_高数
2010-09-19 · TA获得超过4844个赞
知道大有可为答主
回答量:993
采纳率:0%
帮助的人:1810万
展开全部
u[n]=1+u[n-1]/(1+u[n-1])=2-1/(1+u[n-1]),显然1<u[n]<2,(n≥2).
并且u[n+1]-u[n]=-1/(1+u[n])+1/(1+u[n-1])=(u[n]-u[n-1])/[(1+u[n-1])(1+u[n])
而u[2]>u[1],不难用数学归纳法证明u[n]严格递增。从而u[n]有极限,设极限为t,于是
limu[n+1]=lim(2-1/(1+u[n]),即t=2-1/(1+t),由于t>0,求得t=limu[n]=(1+√5)/2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式