求微分方程(x^2-1)dy+(2xy-cosx)dx=0满足初始条件y(0)=1的特解

 我来答
灬海蓝09
2022-05-31 · TA获得超过6129个赞
知道小有建树答主
回答量:433
采纳率:40%
帮助的人:98.3万
展开全部
有点小技巧,但是熟练了这种题应该一眼就能看出来通解.
把俩括号都打开重新组合,注意到2xydx=ydx^2.在注意到x^2dy+ydx^2=d(x^2)y.所以原式化为
d[(x^2)y-y-sinx]=0,直接积分得(x^2)y-y-sinx=C.带入y(0)=1可解得C=-1.所以初值问题的解为
(x^2)y-y-sinx=-1.
注意通过练习熟悉常见的积分因子和分项组合方法,这类题目可以不到5秒钟解出来结果.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式