
求微分方程(x^2-1)dy+(2xy-cosx)dx=0满足初始条件y(0)=1的特解
1个回答
展开全部
有点小技巧,但是熟练了这种题应该一眼就能看出来通解.
把俩括号都打开重新组合,注意到2xydx=ydx^2.在注意到x^2dy+ydx^2=d(x^2)y.所以原式化为
d[(x^2)y-y-sinx]=0,直接积分得(x^2)y-y-sinx=C.带入y(0)=1可解得C=-1.所以初值问题的解为
(x^2)y-y-sinx=-1.
注意通过练习熟悉常见的积分因子和分项组合方法,这类题目可以不到5秒钟解出来结果.
把俩括号都打开重新组合,注意到2xydx=ydx^2.在注意到x^2dy+ydx^2=d(x^2)y.所以原式化为
d[(x^2)y-y-sinx]=0,直接积分得(x^2)y-y-sinx=C.带入y(0)=1可解得C=-1.所以初值问题的解为
(x^2)y-y-sinx=-1.
注意通过练习熟悉常见的积分因子和分项组合方法,这类题目可以不到5秒钟解出来结果.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询