一道数学题 答好给分
在三角形ABC中,AB=AC,点P在BC边上任一点,PO垂直AB于D,PE垂直AC于E,CF垂直AB于F求证:PD+PE=CF...
在三角形ABC中,AB=AC,点P在BC边上任一点,PO垂直AB于D,PE垂直AC于E,CF垂直AB于F
求证:PD+PE=CF 展开
求证:PD+PE=CF 展开
展开全部
连接AP,因为S三角形ABP+三角形ACP=S三角形ABC
所以
S三角形ABP=PD*AB
S三角形ACP=PE*AC
S三角形ABC=AB*CF
因为AB=AC
所以
S三角形ACP=PE*AC=PE*AB
所以
S三角形ABP+三角形ACP=S三角形ABC
PD*AB+PE*AB=AB*CF
所以PD+PE=CF
所以
S三角形ABP=PD*AB
S三角形ACP=PE*AC
S三角形ABC=AB*CF
因为AB=AC
所以
S三角形ACP=PE*AC=PE*AB
所以
S三角形ABP+三角形ACP=S三角形ABC
PD*AB+PE*AB=AB*CF
所以PD+PE=CF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询