
已知函数f(x)=4除以(4+2的ax-a次方)(a∈R)在[0,1]上的最少值为2分之一,则a=?
2个回答
展开全部
我声明是自己做的。很辛苦。
f(x)=4/[4+2^(ax-a)]最小值为1/2
则4+2^(ax-a)最大值为8
则2^(ax-a)最大值为4
则ax-a在[0,1]上最大值为2
设y=ax-a
当a=0时,ax-a=0,不成立
当a>0时,单调递增,在[0,1]上的x=1有最大值0,不符合
当a<0时,单调递减,在[0,1]上的x=0有最大值-a,-a=2,即a=-2
f(x)=4/[4+2^(ax-a)]最小值为1/2
则4+2^(ax-a)最大值为8
则2^(ax-a)最大值为4
则ax-a在[0,1]上最大值为2
设y=ax-a
当a=0时,ax-a=0,不成立
当a>0时,单调递增,在[0,1]上的x=1有最大值0,不符合
当a<0时,单调递减,在[0,1]上的x=0有最大值-a,-a=2,即a=-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询