高二数学在线等!!帮下忙
1个回答
展开全部
∵双曲线的对称轴为坐标轴
∴设(x^2/a^2)-(y^2/b^2)=1 (a>0,b>0)①
或(y^2/a^2)-(x^2/b^2)=1 (a>0,b>0)②
由题意可得,
①∵两个顶点间的距离为2 ∴2a=2,a=1,a^2=1
∵焦点到渐近线的距离为根号2 ∴∣bc/a∣/[√(b/a)^2+1]=√2
b=√2,b^2=2
∴方程为:x^2-y^2/2=1
②∵两个顶点间的距离为2 ∴2b=2,b=1,b^2=1
∵焦点到渐近线的距离为根号2 ∴∣ac/b∣/[√(a/b)^2+1]=√2
a=√2,a^2=2
∴方程为:(y^2/2)-x^2=1
∴设(x^2/a^2)-(y^2/b^2)=1 (a>0,b>0)①
或(y^2/a^2)-(x^2/b^2)=1 (a>0,b>0)②
由题意可得,
①∵两个顶点间的距离为2 ∴2a=2,a=1,a^2=1
∵焦点到渐近线的距离为根号2 ∴∣bc/a∣/[√(b/a)^2+1]=√2
b=√2,b^2=2
∴方程为:x^2-y^2/2=1
②∵两个顶点间的距离为2 ∴2b=2,b=1,b^2=1
∵焦点到渐近线的距离为根号2 ∴∣ac/b∣/[√(a/b)^2+1]=√2
a=√2,a^2=2
∴方程为:(y^2/2)-x^2=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询