∫arcsin根号(x/1+x)dx

 我来答
新科技17
2022-05-28
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
分步积分得∫arcsin{[x/(1+x)]^(1/2)}dx
=xarcsin{[x/(1+x)]^(1/2)}
-∫x/2[1-x/(x+1)]^(1/2)*[(x+1)/x]^(1/2)*dx/(x+1)^2
=xarcsin{[x/(x+1)]^(1/2)}-∫x^(1/2)/2(x+1) dx
=xarcsin{[x/(x+1)]^(1/2)}-∫t/2(t^2+1)*2tdt 设x=t^2
=xarcsin{[x/(x+1)]^(1/2)}-∫[1-1/(t^2+1)]dt
=xarcsin{[x/(x+1)]^(1/2)}-t+arctant+C
arctant=arcsin{[x/(x+1)]^(1/2)}
=(x+1)arcsin{[x/(x+1)]^(1/2)}-x^(1/2)+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式