求曲面(x^2+y^2+z^2)^2=a^3z(a>0)所围成的立体体积 如题,利用球面坐标写 我来答 1个回答 #热议# 应届生在签三方时要注意什么? 科创17 2022-06-13 · TA获得超过5878个赞 知道小有建树答主 回答量:2846 采纳率:100% 帮助的人:171万 我也去答题访问个人页 关注 展开全部 球面坐标,(x^2+y^2+z^2)^2=a^3z可以写作,r^4=a^3rcosφ得到r=a(cosφ)^(1/3)因为r>0, 所以φ∈[0,π/2]V=∫∫∫r^2sinφdrdθdφ=[∫(0->2π)dθ]* [∫(0->π/2)dφ]* [∫(0->a(cosφ)^(1/3)) r^2sinφdr]=πa^3/3... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: