正四面体内切球半径是什么?
展开全部
正四面体内切球半径是 √2a/4。
因为正四面体共有六个面,且每个面都是一个正方形,所以,这个正四面体中的内切球和这个正四面体共有六个切点,而且每个切点都在组成这个正四面体的正方形对角线的交点上,由此不难看出,这个内切球的直径就等于这个正四面体的棱长,所以,内切球的半径就等于正四面体棱长的一半。
推导过程
设正四面体的棱长为1,则它的高为√6/3,而棱切球的球心必在正四面体的高上。
设球心到顶点的距离为x,到底面的距离为y,则有x+y=√6/3,球心到棱的距离为半径R(且切点必在棱的中点上),在顶点和侧棱的中点、球心之间构成一个直角三角形,则有R^2+1/4=x^2。
在底面中心、球心和底面棱的中点之间也构成一个直角三角形,则有R^2=y^2+(√3/6)^2,有上述三个方程可解得:R=√2/4。
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询