人教版高二数学必学的知识点讲解
高二阶段作为承上启下的一年,是学习最容易松懈的一年,往往会因为缺乏新鲜感、陌生感而失去了学习的兴趣和热情,也往往会为高一的努力没有达到预期的目标而自暴自弃,从而在高二阶段对学习失去了信心。我整理了人教版 高二数学 必学的知识点讲解,希望能帮助到你!
人教版高二数学必学的知识点讲解1
1、圆的标准方程:
圆心为A(a,b),半径为r的圆的方程
2、点与圆的关系的判断 方法 :(1),点在圆外(2),点在圆上(3),点在圆内
4.1.2圆的一般方程
1、圆的一般方程:
2、圆的一般方程的特点:
(1)①x2和y2的系数相同,不等于0.
②没有xy这样的二次项.
(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.
(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1圆与圆的位置关系
1、用点到直线的距离来判断直线与圆的位置关系.
4.2.2圆与圆的位置关系
4.2.3直线与圆的方程的应用
1、利用平面直角坐标系解决直线与圆的位置关系;
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论.
4.3.1空间直角坐标系
1、点M对应着确定的有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M
4.3.2空间两点间的距离公式
人教版高二数学必学的知识点讲解2
复数的概念:
形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:
复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
(1)复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:
复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=
虚数单位i:
(1)它的平方等于-1,即i2=-1;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
人教版高二数学必学的知识点讲解3
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人补充)
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)
人教版高二数学必学的知识点讲解相关 文章 :
★ 高二数学必背知识点总结
★ 高二数学知识点总结人教版
★ 高二数学知识点归纳总结
★ 高二数学知识点总结
★ 人教版高二数学下册知识点归纳,人教版高二数学下册知识点归纳
★ 高中高二数学知识点口诀总结
★ 高二数学考试必考知识点
★ 高二数学上下学期知识点复习提纲
★ 高二数学知识点总结详细