y=arcsin根号下(1-x^2)导数

麻烦写下过程,谢谢... 麻烦写下过程,谢谢 展开
 我来答
益洁靖棋
2019-09-03 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.2万
采纳率:25%
帮助的人:1047万
展开全部
解:这是一个复合函数求导的题,复合函数的求法是f(g(x))导数=f'(g(x))*g'(x).y=arcsinx的导数=1/根号(1-x^2)这是公式.
y=根号x的导数=1/(2*根号x)也是公式推导的.
知道这些后可以做这个题了:y=arcsin根号下x的导数y'=[1/根号(1-x)]*[1/(2*根号x)]
毓人
2010-09-21 · TA获得超过2.4万个赞
知道大有可为答主
回答量:1.2万
采纳率:95%
帮助的人:4105万
展开全部
y=arc sin((1-x^2)^0.5)
y'=(1-(1-x^2))^-(1/2)*(-2x)
=(-2x)/((1-(1-x^2))^0.5)
=(-2x)/((1-1+x^2)^0.5)
=(-2x)/(x^2)^0.5)
=-2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zerox1987
2010-09-21 · TA获得超过1270个赞
知道小有建树答主
回答量:497
采纳率:0%
帮助的人:331万
展开全部
y'=1/√(1-(1-x^2)^2)*(-2x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式