判断函数y=x+1\x的单调性,并求出它的单调区间

最好有详细过程,万分感谢... 最好有详细过程,万分感谢 展开
迮振华抗环
2020-04-02
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:∵y=x+1/x
∴此函数的定义域是(-∞,0)∪(0,+∞)
∵y'=1-1/x²=(x²-1)/x²
令y'=0,得x=±1
当x∈(-∞,-1]∪[1,+∞)时,y'>0,则y单调递增
当x∈[-1,0)∪(0,1]时,y'<0,则y单调递减
∴函数y=x+1/x单调递增是:(-∞,-1]∪[1,+∞)
函数y=x+1/x单调递减是:[-1,0)∪(0,1]。
补充:对于y=ax+b/x.
(a,b>0)
单调区间:
单调递减:
x>√(a/b)
或x<-√(a/b).
单调递增:
-√(a/b)<x<0

0<x<√(a/b)
可以利用这类函数的单调性解很多题,可以画草图。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
单墨彻衣茶
2019-09-15
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:∵y=x+1/x
∴此函数的定义域是(-∞,0)∪(0,+∞)
∵y'=1-1/x²=(x²-1)/x²
令y'=0,得x=±1
当x∈(-∞,-1]∪[1,+∞)时,y'>0,则y单调递增
当x∈[-1,0)∪(0,1]时,y'<0,则y单调递减
∴函数y=x+1/x单调递增是:(-∞,-1]∪[1,+∞)
函数y=x+1/x单调递减是:[-1,0)∪(0,1]。
补充:对于y=ax+b/x.
(a,b>0)
单调区间:
单调递减:
x>√(a/b)
或x<-√(a/b).
单调递增:
-√(a/b)<x<0

0<x<√(a/b)
可以利用这类函数的单调性解很多题,可以画草图。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
等风鸿煊BW
2019-08-13
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:∵y=x+1/x
∴此函数的定义域是(-∞,0)∪(0,+∞)
∵y'=1-1/x²=(x²-1)/x²
令y'=0,得x=±1
当x∈(-∞,-1]∪[1,+∞)时,y'>0,则y单调递增
当x∈[-1,0)∪(0,1]时,y'<0,则y单调递减
∴函数y=x+1/x单调递增是:(-∞,-1]∪[1,+∞)
函数y=x+1/x单调递减是:[-1,0)∪(0,1]。
补充:对于y=ax+b/x.
(a,b>0)
单调区间:
单调递减:
x>√(a/b)
或x<-√(a/b).
单调递增:
-√(a/b)<x<0

0<x<√(a/b)
可以利用这类函数的单调性解很多题,可以画草图。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
卿才英委鸥
2019-07-02
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:∵y=x+1/x
∴此函数的定义域是(-∞,0)∪(0,+∞)
∵y'=1-1/x²=(x²-1)/x²
令y'=0,得x=±1
当x∈(-∞,-1]∪[1,+∞)时,y'>0,则y单调递增
当x∈[-1,0)∪(0,1]时,y'<0,则y单调递减
∴函数y=x+1/x单调递增是:(-∞,-1]∪[1,+∞)
函数y=x+1/x单调递减是:[-1,0)∪(0,1]。
补充:对于y=ax+b/x.
(a,b>0)
单调区间:
单调递减:
x>√(a/b)
或x<-√(a/b).
单调递增:
-√(a/b)<x<0

0<x<√(a/b)
可以利用这类函数的单调性解很多题,可以画草图。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友a411951
2010-09-21
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
y=x+1/x
y'=1+(-1)x^(-2)
y''=(-1)*(-2)x^(-3)=2x^(-3)

令y'=0,得:x=-1或x=1
即在x=-1或x=1处有极值

当x=-1时,y''=-2<0,所以x=-1是极大值
当x=1时,y''=2>0,所以x=1是极小值

所以单调区间是:
(-∞,-1]单调递增
(-1,0)单调递减
(0,1)单调递减
[1,+∞)单调递增
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式