求证一道高中空间几何题目
已知四棱锥SABCD底面是正方形SA⊥平面ABCD,SA=SBMNfengbieweiSBSD的中点。1求SBSC与地面ABCD所成角的正切值。2若SA=a求直线AD到平...
已知四棱锥SABCD底面是正方形 SA⊥平面ABCD,SA=SB MNfengbie wei SB SD 的中点。1 求SB SC与地面ABCD所成角的正切值。2 若SA=a 求直线AD到平面SBC的距离 3求证SC⊥平面AMN 要详细的步骤
展开
展开全部
上边的是SA=AB吧, SA是不等于SB的。
(1) ∵A是S垂足
∴∠SBA为SB与地面ABCD所成角
∠SCA为SC与地面ABCD所成角
∴tan∠SBA=SA∶SB=1;
tan∠SCA=SA∶SC=1:√2;
(2)∵AD‖BC
∴AD‖平面SBC
∴A到平面SBC的距离=直线AD到平面SBC的距离
易知BC‖AD⊥平面ABS
∴BC⊥AM
又∵AM⊥SB
∴AM⊥平面SBC
∴A到平面SBC的距离=AM=√2/2a;
(3)
证 ∵MN是 SB SD 的中点
∴MN‖BD⊥AC;
∵SA⊥底面;
∴SA⊥BD;
∴SA⊥MN;
∴MN⊥平面SAC;
∴MN⊥SC;
由(2)知,AM⊥平面SBC;
∴AM⊥SC;
∴SC⊥平面AMN
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询