一元二次不等式

a>b>c,求证;a^2b+b^2c+c^2a>ab^2+bc^2+ca^2... a>b>c,求证;a^2b+b^2c+c^2a>ab^2+bc^2+ca^2 展开
百度网友d65ae5b
2010-09-22 · 超过30用户采纳过TA的回答
知道答主
回答量:88
采纳率:0%
帮助的人:70.3万
展开全部
把不等式右边移至左边,合并项,得
a^2b+b^2c+c^2a-ab^2-bc^2-ca^2
=a^2(b-c)+a(c^2-b^2)+bc(b-c)
=a^2(b-c)-(ab+ac)(b-c)+bc(b-c)
=(b-c)(a^2-ac-ab+bc)
=(b-c)[a(a-c)-b(a-c)]
=(b-c)(a-b)(a-c)
因为a>b>c,
所以b-c>0, a-b>0, a-c>0,
所以(b-c)(a-b)(a-c)>0,
即a^2b+b^2c+c^2a-ab^2-bc^2-ca^2>0,
所以a^2b+b^2c+c^2a>ab^2+bc^2+ca^2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式