什么是基础解系,其解向量有何意义?

 我来答
小溪趣谈电子数码
高粉答主

2022-10-23 · 专注解答各类电子数码疑问
小溪趣谈电子数码
采纳数:2103 获赞数:584859

向TA提问 私信TA
展开全部

如果该行列式为一个n阶行列式,那基础解系的解向量为n减去秩的数量,简单地说解向量的个数为零行数;秩可以看作方程组中有效方程的个数,n代表未知量的个数,而基础解系则可看作自由未知量,显然有未知量个数-有效方程个数=自由未知量个数,即n-r=基础解系中向量个数。

对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r<n时,有无穷多解;可用消元法求解。

扩展资料:

基础解系需要满足三个条件:

(1)基础解系中所有量均是方程组的解;

(2)基础解系线性无关,即基础解系中任何一个量都不能被其余量表示;

(3)方程组的任意解均可由基础解系线性表出,即方程组的所有解都可以用基础解系的量来表示。值得注意的是:基础解系不是唯一的,因个人计算时对自由未知量的取法而异。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式