au分离背景音乐和人声的方法是什么?

 我来答
爱电子数码的发烧友
2022-12-14 · TA获得超过1306个赞
知道小有建树答主
回答量:3662
采纳率:100%
帮助的人:58.8万
展开全部

au分离背景音乐和人声具体操作方法如下:

电脑:华为笔记本。

系统:win10。

软件:Adobe Audition CS6。

1、首先,把自己需要处理的那首歌copy到桌面,再拉到Au轨道上。

2、然后Ctrl+A选中音频。

3、然后点击效果-立体声声像-提取中置声道。

4、在预设中选择移除人声,就保留着伴奏。

5、在预设中选择无伴奏和声,降低伴奏声音,增强人声。

6、根据自己的需求选择好预设后,点击应用。

7、生成新的音频之后,右击音频-存储选区为。

8、在保存选区的对话框中可根据需求选择音频的格式。并确定。

9、最后回到桌面,可以看到新生成的音频文件了。

Adobe Audition用途

Audition专为在照相室、广播设备和后期制作设备方面工作的音频和视频专业人员设计,可提供先进的音频混合、编辑、控制和效果处理功能。

最多混合 128 个声道,可编辑单个音频文件,创建回路并可使用 45 种以上的数字信号处理效果。Audition 是一个完善的多声道录音室,可提供灵活的工作流程并且使用简便。

轻秒
2023-12-04 · 百度认证:轻秒官方账号
轻秒
向TA提问
展开全部

推荐更简单的平台,建议使用轻秒音分轨,傻瓜式操作,在线分离人声,极速分离背景音乐和人声。

人声分离是一种音频处理技术,旨在从混合音频中分离出特定的人声部分。这对于语音识别、语音增强、音频编辑等应用非常有用。AI在人声分离中的应用通常涉及深度学习和神经网络技术。以下是人声分离的一般原理:

  • 深度学习模型: 使用深度神经网络(Deep Neural Networks,DNN)或卷积神经网络(Convolutional Neural Networks,CNN)等深度学习模型。这些模型能够学习复杂的特征表示,有助于从混合音频中分离出人声。

  • 训练数据: 为了训练模型,需要大量包含人声和背景音的音频数据。这些数据用于训练模型,使其学会识别人声和其他噪声的特征。

  • 标签数据: 训练数据通常需要标签,即指示每个时间点上哪些声音是人声,哪些是背景噪声。这有助于模型学习正确的分离模式。

  • 特征提取: 在深度学习模型中,通常会使用卷积层来提取音频中的特征。这些特征可能包括频谱信息、时域信息等,有助于区分人声和其他声音。

  • 递归神经网络(Recurrent Neural Networks,RNN): 在音频处理中,时间序列是很重要的,因为音频是一个随时间变化的信号。RNN等循环神经网络结构能够捕捉到音频信号的时序信息,有助于更好地处理音频数据。

  • 损失函数: 在训练过程中,需要定义一个损失函数,用于衡量模型输出与实际标签之间的差异。常见的损失函数包括交叉熵损失函数。

  • 优化算法: 通过梯度下降等优化算法来调整模型参数,使得模型能够更好地分离人声和背景音。

  • 推断: 训练完成后,模型可以用于推断,即在新的音频数据上分离出人声。推断阶段通常使用前向传播,通过模型预测音频中每个时间点上的人声和背景音。

  • 人声分离的性能取决于训练数据的质量、模型的架构、参数调整等多个因素。近年来,随着深度学习技术的不断发展,人声分离在实际应用中取得了显著的进展。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式