已知数列{an}满足a1=1/2,a(n+1)*an-2a(n+1)+1=0
展开全部
1.
应该是{1/(An-1)}是等差数列
A(n+1)×(An-2)=-1
A(n+1)=-1/(An-2)
A(n+1)-1=-1/(An-2)-1=-(An-1)/(An-2)
1/(A(n+1)-1)=-(An-2)/(An-1)=1/(An-1)-1
1/(A1-1)=1/(1/2-1)=-2
{1/(An-1)}是-2为首项,-1为公比的公差的等差数列
2.
1/(An-1)=-2-(n-1)=-n-1
An-1=-1/(n+1)
An=1-1/(n+1)=n/(n+1)
应该是{1/(An-1)}是等差数列
A(n+1)×(An-2)=-1
A(n+1)=-1/(An-2)
A(n+1)-1=-1/(An-2)-1=-(An-1)/(An-2)
1/(A(n+1)-1)=-(An-2)/(An-1)=1/(An-1)-1
1/(A1-1)=1/(1/2-1)=-2
{1/(An-1)}是-2为首项,-1为公比的公差的等差数列
2.
1/(An-1)=-2-(n-1)=-n-1
An-1=-1/(n+1)
An=1-1/(n+1)=n/(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询