求一道高一数学函数题详解

设f(x)是定义在[-1,1]上的奇函数,对任意a,b属于[-1,1],当a+b不等于0时,都有[f(a)+f(b)]/(a+b)>0问:当a>b时,比较f(a)与f(b... 设f(x)是定义在[-1,1]上的奇函数,对任意a,b属于[-1,1],当a+b不等于0时,都有[f(a)+f(b)]/(a+b)>0

问:当a>b时,比较f(a)与f(b)的大小

详细过程~~!!!

答案我已经有了.
过程过程~!!!
如何得到[f(a)+f(-b)]/[a+(-b)]>0的???为什么可以把f(b)换成F(-b)?
展开
miniappnF9831RdFtmom
2010-09-23 · TA获得超过2045个赞
知道小有建树答主
回答量:216
采纳率:0%
帮助的人:368万
展开全部
由题知[f(a)+f(-b)]/[a+(-b)]>0
因为f(x)是定义在[-1,1]上的奇函数,所以f(-b)=-f(b)
对任意a,b属于[-1,1],当a+b不等于0时,都有[f(a)+f(b)]/(a+b)>0
-b也属于[-1,1]
所以对任意a,-b属于[-1,1],当a-b不等于0时,都有[f(a)+f(-b)]/(a-b)>0
所以[f(a)-f(b)]/(a-b)>0,a-b不等于0
因为a>b所以a-b>0,所以f(a)-f(b)>0,所以f(a)>f(b)
怕扁
2012-07-18 · 超过20用户采纳过TA的回答
知道答主
回答量:106
采纳率:0%
帮助的人:45.6万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式