解三角形问题
三角形ABC为锐角三角形,sinA=sin(π/3+B)sin(π/3-B)+sinB(1)求A(2)若向量AB*向量AC=12,a=2根号7,求b、c(b<c)...
三角形ABC为锐角三角形,sinA=sin(π/3+B)sin(π/3-B)+sinB
(1)求A
(2)若向量AB*向量AC=12,a=2根号7,求b、c(b<c) 展开
(1)求A
(2)若向量AB*向量AC=12,a=2根号7,求b、c(b<c) 展开
2个回答
展开全部
是这个吧?sin²A=sin(π/3+B)sin(π/3-B)+sin²B
sin²A=sin(π/3+B)sin(π/3-B)+sin²B
=(sinπ/3cosB+cosπ/3sinB)(sinπ/3cosB-cosπ/3sinB)+sin²B
=(sinπ/3cosB)²-(cosπ/3sinB)²+sin²B
=3cos²B/4-sin²B/4+sin²B
=(3cos²B+3sin²B)/4
=3/4
A为锐角
故sinA=√3/2
A=π/3
(2)AB*AC=bc=12,.........(1)
a=2√7
根据余弦定理有:
cosA=(b^2+c^2 -a^2)/2bc
b^2+c^2 -28=2*12*1/2
b^2+c^2 =40
即(b+c)^2-2bc=40
(b+c)^2=64
b+c=8 。。。。(2)
b<c,联立(1)(2)解得:
b=2,c=6
sin²A=sin(π/3+B)sin(π/3-B)+sin²B
=(sinπ/3cosB+cosπ/3sinB)(sinπ/3cosB-cosπ/3sinB)+sin²B
=(sinπ/3cosB)²-(cosπ/3sinB)²+sin²B
=3cos²B/4-sin²B/4+sin²B
=(3cos²B+3sin²B)/4
=3/4
A为锐角
故sinA=√3/2
A=π/3
(2)AB*AC=bc=12,.........(1)
a=2√7
根据余弦定理有:
cosA=(b^2+c^2 -a^2)/2bc
b^2+c^2 -28=2*12*1/2
b^2+c^2 =40
即(b+c)^2-2bc=40
(b+c)^2=64
b+c=8 。。。。(2)
b<c,联立(1)(2)解得:
b=2,c=6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询