分段函数f(x)={(1+x)^(1/x)-e,x≠0 0 ,x=0},求f(x)在点x=0处的导
展开全部
f(x)
=(1+x)^(1/x)-e , x≠0
=0 , x=0
lim(x->0) f(x) =lim(x->0) (1+x)^(1/x)-e =e-e =0 =f(0) =>x=0, f(x) 连续
f'(0)
= lim(h->0) [(1+h)^(1/h)-e -f(0) ]/h
=lim(h->0) [(1+h)^(1/h)-e]/h
=lim(h->0) { e^[ln(1+h)/h]-e }/h
=lim(h->0) { e^[1-(1/2)h]-e }/h
=lim(h->0) e. { e^[-(1/2)h]-1 }/h
=lim(h->0) e. [-(1/2)h]/h
=-(1/2)e
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询