求函数的单调增区间和单调减区间?
1个回答
展开全部
1、由ln(x)的性质可知x>0,即可确定函数的定义域为x>0;
2、对函数求一阶导数,确定其单调递增及递减区间,并尽可能确定其极大值或极小值;
3、对函数求二阶导数,确定其斜率的变化规律,即确定其凹凸性;
4、y=ln(x)/x的图像如下:
扩展资料
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。
参考资料:百度百科-对数函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询