集合的子集个数怎么算的
计算过程:
知一个集合里有n个元素(下面的C代表组合,其中nCr代表从n个元素内选取r个元素进行组合)
首先子集中元素有0个的有[nC0]
子集元素有1个的有[nC1]
子集元素有2个的有[nC2]
??
子集元素有m个的有[nCm]
??
子集元素有n-1个的有[nC(n-1)]
子集元素有n个的有[nCn]
所以一个有限集合内有[nC0]+[nC1]+[nC2]+??+[nCm]+??+[nC(n-1)]+[nCn]
根据二项式定理知[nC0]+[nC1]+[nC2]+??+[nCm]+??+[nC(n-1)]+[nCn]=2^n
扩展资料
集合在数学领域具有无可比拟的特殊重要性。
集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。
特性
1、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
2、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。