
一道数列求和问题Sn=(2^n)/{(2^n-1)[2^(n+1)-1]}裂项相消怎么裂啊??
1个回答
展开全部
2^n=(2-1)*2^n
=2*2^n-2^n
=2^(n+1)-2^n
=[2^(n+1)-1]-(2^n-1)
所以(2^n)/{(2^n-1)[2^(n+1)-1]}
=[2^(n+1)-1]/{(2^n-1)[2^(n+1)-1]}-(2^n-1){(2^n-1)[2^(n+1)-1]}
=1/(2^n-1)-1/[2^(n+1)-1]
所以相加=1/(2-1)-1/(4-1)+1/(4-1)-1/(8-1)+……+1/(2^n-1)-1/[2^(n+1)-1]
=1-1/[2^(n+1)-1]
=[2^(n+1)-2]/[2^(n+1)-1],1,Sn=1/(2^n-1)-1/(2^(n+1)-1),1,
=2*2^n-2^n
=2^(n+1)-2^n
=[2^(n+1)-1]-(2^n-1)
所以(2^n)/{(2^n-1)[2^(n+1)-1]}
=[2^(n+1)-1]/{(2^n-1)[2^(n+1)-1]}-(2^n-1){(2^n-1)[2^(n+1)-1]}
=1/(2^n-1)-1/[2^(n+1)-1]
所以相加=1/(2-1)-1/(4-1)+1/(4-1)-1/(8-1)+……+1/(2^n-1)-1/[2^(n+1)-1]
=1-1/[2^(n+1)-1]
=[2^(n+1)-2]/[2^(n+1)-1],1,Sn=1/(2^n-1)-1/(2^(n+1)-1),1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询