数学期望和方差公式怎么推导的?
2个回答
展开全部
数学期望和方差是统计学中常用的概念,可以从数学上描述数据的集中度和离散度。
数学期望的推导:
设随机变量X的概率密度函数或概率分布为f(x),数学期望定义为E(X) = ∫xf(x)dx,即随机变量X每个可能取值的概率乘以该取值的数值,然后对所有可能取值进行求和或求积分。
方差的推导:
方差用来衡量随机变量的离散程度,方差的厅慎定义为Var(X) = E((X-E(X))^2),即随机变量X与其数学期望的差的平方梁伏橘的数学期望。可以橡团通过以下步骤推导方差的公式:
1. 展开方差公式:Var(X) = E(X^2 - 2XE(X) + (E(X))^2)
2. 使用期望的线性性质:Var(X) = E(X^2) - 2E(X)E(X) + (E(X))^2
3. 化简得:Var(X) = E(X^2) - (E(X))^2
通过上述推导,我们可以得到数学期望和方差的公式。这些公式在统计学和概率论中有广泛的应用。
数学期望的推导:
设随机变量X的概率密度函数或概率分布为f(x),数学期望定义为E(X) = ∫xf(x)dx,即随机变量X每个可能取值的概率乘以该取值的数值,然后对所有可能取值进行求和或求积分。
方差的推导:
方差用来衡量随机变量的离散程度,方差的厅慎定义为Var(X) = E((X-E(X))^2),即随机变量X与其数学期望的差的平方梁伏橘的数学期望。可以橡团通过以下步骤推导方差的公式:
1. 展开方差公式:Var(X) = E(X^2 - 2XE(X) + (E(X))^2)
2. 使用期望的线性性质:Var(X) = E(X^2) - 2E(X)E(X) + (E(X))^2
3. 化简得:Var(X) = E(X^2) - (E(X))^2
通过上述推导,我们可以得到数学期望和方差的公式。这些公式在统计学和概率论中有广泛的应用。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
由X~N(0,4)与Y~N(2,3/4)为正态分布得:
X~N(0,4)数学期望E(X)=0,方差D(X)=4;
Y~N(2,3/4)数学期望E(Y)=2,方差D(Y)=4/3。
由X,Y相互独立得:
E(XY)=E(X)E(Y)=0×2=0,
D(X+Y)=D(X)+D(Y)=4×4/3=16/3,
D(2X-3Y)=2²D(X)-3²D(Y)=4×4-9×4/3=4
扩展资料 :
1. 正态分布性质:
⑴ 一般正态分布记为X~N(μ,σ²),标准正态分布记为X~N(0,1)。
⑵ 一般正态分布转化为标准正态分布:若X~N(μ,σ²),Y=(X-μ)/σ ~N(0,1)。
⑶ 正态分布数学期望为E(X)=μ,D(X)=σ²。
2. 数学期望码手与方差性质:
设C为一个常数,X和Y是两个大清随机变量,有如下性质:
⑴ 数学期望性质:
E(C)=C,E(CX)=CE(X),E(X+Y)=E(X)+E(Y),在X和Y相互独立时有E(XY)=E(X)E(Y)。
⑵方差性质:
D(C)=0,D(CX)=C²D(X),D(X+迟仿嫌C)=D(X),在X和Y相互独立时有D(X+Y)=D(X)+D(Y)。
参考资料 :
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询