数学期望和方差公式怎么推导的?
2个回答
展开全部
数学期望和方差是统计学中常用的概念,可以从数学上描述数据的集中度和离散度。
数学期望的推导:
设随机变量X的概率密度函数或概率分布为f(x),数学期望定义为E(X) = ∫xf(x)dx,即随机变量X每个可能取值的概率乘以该取值的数值,然后对所有可能取值进行求和或求积分。
方差的推导:
方差用来衡量随机变量的离散程度,方差的定义为Var(X) = E((X-E(X))^2),即随机变量X与其数学期望的差的平方的数学期望。可以通过以下步骤推导方差的公式:
1. 展开方差公式:Var(X) = E(X^2 - 2XE(X) + (E(X))^2)
2. 使用期望的线性性质:Var(X) = E(X^2) - 2E(X)E(X) + (E(X))^2
3. 化简得:Var(X) = E(X^2) - (E(X))^2
通过上述推导,我们可以得到数学期望和方差的公式。这些公式在统计学和概率论中有广泛的应用。
数学期望的推导:
设随机变量X的概率密度函数或概率分布为f(x),数学期望定义为E(X) = ∫xf(x)dx,即随机变量X每个可能取值的概率乘以该取值的数值,然后对所有可能取值进行求和或求积分。
方差的推导:
方差用来衡量随机变量的离散程度,方差的定义为Var(X) = E((X-E(X))^2),即随机变量X与其数学期望的差的平方的数学期望。可以通过以下步骤推导方差的公式:
1. 展开方差公式:Var(X) = E(X^2 - 2XE(X) + (E(X))^2)
2. 使用期望的线性性质:Var(X) = E(X^2) - 2E(X)E(X) + (E(X))^2
3. 化简得:Var(X) = E(X^2) - (E(X))^2
通过上述推导,我们可以得到数学期望和方差的公式。这些公式在统计学和概率论中有广泛的应用。
展开全部
由X~N(0,4)与Y~N(2,3/4)为正态分布得:
X~N(0,4)数学期望E(X)=0,方差D(X)=4;
Y~N(2,3/4)数学期望E(Y)=2,方差D(Y)=4/3。
由X,Y相互独立得:
E(XY)=E(X)E(Y)=0×2=0,
D(X+Y)=D(X)+D(Y)=4×4/3=16/3,
D(2X-3Y)=2²D(X)-3²D(Y)=4×4-9×4/3=4
扩展资料 :
1. 正态分布性质:
⑴ 一般正态分布记为X~N(μ,σ²),标准正态分布记为X~N(0,1)。
⑵ 一般正态分布转化为标准正态分布:若X~N(μ,σ²),Y=(X-μ)/σ ~N(0,1)。
⑶ 正态分布数学期望为E(X)=μ,D(X)=σ²。
2. 数学期望与方差性质:
设C为一个常数,X和Y是两个随机变量,有如下性质:
⑴ 数学期望性质:
E(C)=C,E(CX)=CE(X),E(X+Y)=E(X)+E(Y),在X和Y相互独立时有E(XY)=E(X)E(Y)。
⑵方差性质:
D(C)=0,D(CX)=C²D(X),D(X+C)=D(X),在X和Y相互独立时有D(X+Y)=D(X)+D(Y)。
参考资料 :
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询