已知复数z满足Iz-4I=I z-4i I,且z+(14-z)/(z-1)为实数,求z?)

 我来答
清宁时光17
2022-08-10 · TA获得超过1.4万个赞
知道大有可为答主
回答量:7210
采纳率:100%
帮助的人:42.2万
展开全部
设z=a+bi
|z-4|=|z-4i|,z + (14-z)/(z-1)是实数
所以(a-4)^2+b^2=a^2+(b-4)^2
a^2-8a+16+b^2=a^2+b^2-8b+16
-8a=-8b
a=b
又因为
a+bi+(14-a+bi)/(a-1+bi)
=a+bi+{(14-a)(a-1)+b^2+[(a-1)b-(14-a)b]i}/[(a-1)^2+b^2]
所以b+[(a-1)b-(14-a)b]/[(a-1)^2+b^2]=0
因为a=b
所以a+(a^2-a-14a+a^2)/(2a^2-2a+1)=0
2a^3-2a^2+a+2a^2-15a=0
所以a=0 或 -2 或3
b=0 或 -2 或3
所以答案是0或3+3i 或 -2-2i
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式