已知e^x^2为f(x)的一个原函数,求∫x^2f ''(x)dx,
展开全部
∫ f(x) dx = e^x^2
f(x) = 2xe^x^2
f'(x) = 2(e^x^2 + x * 2xe^x^2) = 2(1 + 2x^2)e^x^2
∫ x^2f''(x) dx
= ∫ x^2 df'(x)
= x^2f'(x) - ∫ f'(x) d(x^2)
= x^2 * 2(1 + 2x^2)e^x^2 - 2∫ x df(x)
= 2(1 + 2x^2)x^2e^x^2 - 2xf(x) + 2∫ f(x) dx
= 2(1 + 2x^2)x^2e^x^2 - 2x * 2xe^x^2 + 2 * e^x^2
= (4x^4 - 2x^2 + 2)e^x^2
f(x) = 2xe^x^2
f'(x) = 2(e^x^2 + x * 2xe^x^2) = 2(1 + 2x^2)e^x^2
∫ x^2f''(x) dx
= ∫ x^2 df'(x)
= x^2f'(x) - ∫ f'(x) d(x^2)
= x^2 * 2(1 + 2x^2)e^x^2 - 2∫ x df(x)
= 2(1 + 2x^2)x^2e^x^2 - 2xf(x) + 2∫ f(x) dx
= 2(1 + 2x^2)x^2e^x^2 - 2x * 2xe^x^2 + 2 * e^x^2
= (4x^4 - 2x^2 + 2)e^x^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询