一道高中的数学题目(导数)——有一小题大概是这样:求证f(x)≥g(x)在定义域上恒成立

是否可以用以下两个不等式证明:1、f(X0)≥g(X0)(X0是定义域的左端点,两函数均为连续函数)2、f'(x)≥g'(x)(两函数均不存在渐近线)我问了老师,老师说我... 是否可以用以下两个不等式证明:1、f(X0)≥g(X0)(X0是定义域的左端点,两函数均为连续函数)2、f'(x)≥g'(x)(两函数均不存在渐近线)
我问了老师,老师说我的论证不充分,就没给解释,求助网络大神!谢谢~
展开
 我来答
百度网友8d8acae
2010-09-23 · TA获得超过6503个赞
知道大有可为答主
回答量:1637
采纳率:100%
帮助的人:875万
展开全部
证明是正确的;
不明白老师说的不充分的原因,也许他是希望看到如此的 【辅助函数】证明吧:

令:F(x)=f(x)-g(x)
F(x0)=0
F'(x)≥0
F(x)≥F(x0)=0
f(x)≥g(x)

【以上证明要求定义域为一个区间如: [x0 ,b] 或 [x0, +∞) ,
而不是几个区间的并集】
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式