什么是函数有界?

 我来答
Zoie17980
2022-07-24 · TA获得超过2.6万个赞
知道小有建树答主
回答量:545
采纳率:100%
帮助的人:16.8万
展开全部

函数收敛是由对函数在某点收敛定义引申出来的,函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。

若函数在定义域的每一点都收敛,则通常称函数是收敛的。有界和收敛不一样,有界就是说函数的值的绝对值总是小于某个数。

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

相关信息:

对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。

在收敛域上 ,函数项级数的和是x的函数S(困好x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)液兄+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛汪埋铅域上有lim n→∞Sn(x)=S(x)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
内蒙古恒学教育
2022-11-08 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
有界函数是设f(x)是唤辩区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
一般来说,连续函数在闭区和誉缺间具有有界性。例如:y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
sinx,cosx,sin(1/x),cos(1/x),arcsinx,arccosx,arctanx,arccotx是常见的有界函数。
函数f(x)在X上有虚神界的充分必要条件是它在X上既有上界也有下界。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式