3个回答
展开全部
1/2+1/6+1/12+1/20+1/30+1/42
=1/(1×2)+1/(2×3)+1/(3×4)+1/(4×5)+1/(5×6)+1/(6×7)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7
这是一道非常古老的题目了。
扩展:
1/(1×2)+1/(2×3)+...+1/[n(n+1)]
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
=1/(1×2)+1/(2×3)+1/(3×4)+1/(4×5)+1/(5×6)+1/(6×7)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7
这是一道非常古老的题目了。
扩展:
1/(1×2)+1/(2×3)+...+1/[n(n+1)]
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询