高等数学,定积分,求大神
展开全部
设M=∫【0,π/2】lnsinxdx
令x=2t.
则M=2∫【0,π/4】lnsin2tdt=2∫【0,π/4】
ln(2sintcost)dt =2∫【0,π/4】ln2dt+2∫【0,π/4】lnsintdt+2∫【0,π/4】lncostdt
而对于N=∫【0,π/4】lncostdt,
令t=π/2-u. 则有N=∫【π/2,π/4】lnsin(π/2-u)(-du)
=∫【π/4,π/2】lncosudu =∫【π/4,π/2】lncostdt
∴M=2∫【0,π/4】ln2dt+2∫【0,π/4】lncostdt+2∫【π/4,π/2】lncostdt
=(πln2)/2+2∫【0,π/2】lncostdt=(πln2)/2+2∫【0,π/2】lnsintdt=(πln2)/2+2M
∴M=(-πln2)/2.
令x=2t.
则M=2∫【0,π/4】lnsin2tdt=2∫【0,π/4】
ln(2sintcost)dt =2∫【0,π/4】ln2dt+2∫【0,π/4】lnsintdt+2∫【0,π/4】lncostdt
而对于N=∫【0,π/4】lncostdt,
令t=π/2-u. 则有N=∫【π/2,π/4】lnsin(π/2-u)(-du)
=∫【π/4,π/2】lncosudu =∫【π/4,π/2】lncostdt
∴M=2∫【0,π/4】ln2dt+2∫【0,π/4】lncostdt+2∫【π/4,π/2】lncostdt
=(πln2)/2+2∫【0,π/2】lncostdt=(πln2)/2+2∫【0,π/2】lnsintdt=(πln2)/2+2M
∴M=(-πln2)/2.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询