帮帮忙16
1个回答
展开全部
证明:设正方形的边长为4K
∵正方形ABCD
∴AB=AD=BC=CD=4K,∠B=∠C=∠D=90
∵F是CD的中点
∴CF=DF=2K
∴AF²=AD²+DF²=16K²+4K²=20K²
∵CE=BC/4
∴CE=K
∴BE=BC-CE=3K
∴EF²=CF²+CE²=4K²+K²=5K²
AF²=AB²+BE²=16K²+9K²=25K²
∴AE²=AF²+EF²=25K²
∴∠EFA=90
记得采纳我的答案哦,祝你学习进步
∵正方形ABCD
∴AB=AD=BC=CD=4K,∠B=∠C=∠D=90
∵F是CD的中点
∴CF=DF=2K
∴AF²=AD²+DF²=16K²+4K²=20K²
∵CE=BC/4
∴CE=K
∴BE=BC-CE=3K
∴EF²=CF²+CE²=4K²+K²=5K²
AF²=AB²+BE²=16K²+9K²=25K²
∴AE²=AF²+EF²=25K²
∴∠EFA=90
记得采纳我的答案哦,祝你学习进步
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询