如图,以三角形ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为bc的中点,过点d做圆o的切线交ab边于点e

求证:1、de垂直于ac;2、连接oc交de于点f,若sin<abc=3\4求:of\fc的值... 求证:1、de垂直于ac;2、连接oc交de于点f,若sin<abc=3\4求:of\fc的值 展开
FANXD0515
推荐于2019-06-10 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1963
采纳率:69%
帮助的人:663万
展开全部
(1)证明:
∵AB是圆O的直径(已知)
∴OA=OB(圆的半径相等)
∵D是BC中点(已知)
∴OD∥AC(三角形两边的中位线平行于第三边)
∵DE是圆的切线(已知)
∴DE⊥OD(圆的切线垂直于过切点的半径)
∴DE⊥AC(一条直线垂直于另一条直线,也垂直于它的平行线)
(2)连接AD
则:∠ADB=90°(直径所对的圆周角是直角)
所以:AB=AC(线段垂直平分线上的点到线段两端的距离相等)
所以:∠ABC=∠ACB(三角形中,等边对应的角也相等)
已知sin∠ABC=3/4,则cos∠ABC=√(1-sin²∠ABC)=√7/4。
设圆半径为R,
在RT⊿ABD中,AB=2R,AD=ABsin∠ABC=2Rx(3/4)=3R/2,BD=ABcos∠ABC=2R(√7/4)=√7R/2
在RT⊿DEC中,CE=CDcos∠ACB=BDcos∠ABC=(√7R/2)x (√7/4)=7R/8
在RT⊿OFD和⊿CFE中
∵∠DOF=∠ECF
∴RT⊿OFD∽RT⊿CFE(直角三角形中,一锐角相等,两直角三角形相似)
∴OF/FC=OD/CE=R/ (7R/8)=8/7(相似三角形对应边成比例)
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式