已知函数y=f(x)的定义域为R,并对一切实数x都有f(2+x)=f(2-x).证明:函数y=f(x)的图像关于直线x=2对称

要有具体的过程... 要有具体的过程 展开
信快是10
2014-06-19 · 超过64用户采纳过TA的回答
知道答主
回答量:123
采纳率:0%
帮助的人:63万
展开全部
要y=f(x)图像关于x=2对称,则要对于每个y=f(x)上的点P(x1,y1),都有它关于x=2对称点P'(x1',y1')在图像上 x1'=4-x1 y1'=y1 由于f(2+x)=f(2-x) ∴对于任意实数x,有f(x)=f(4-x) ∴y1'=y1=f(x1)=f(4-x1)=f(x1') ∴P'在图像上 ∴函数y=f(x)的图像关于直线x=2对称
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式