证明xy不论是什么,有理数,多项式x的平方加y的平方减四x+8y+25的值总是正数

钟馗降魔剑
2014-05-30 · TA获得超过1296个赞
知道小有建树答主
回答量:393
采纳率:0%
帮助的人:363万
展开全部
证明:x^2+y^2-4x+8y+25=(x^2-4x)+(y^2+8y)+25
=(x^2-4x+4)+(y^2+8y+16)+25-4-16
=(x-2)^2+(y+4)^2+5
因为(x-2)^2≥0,(y+4)^2≥0,所以(x-2)^2+(y+4)^2+5>0
即原式的值总为正数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式