如何证明一个矩阵是可逆的?(多种方法)

 我来答
H很好啊0442
推荐于2017-09-03 · 超过60用户采纳过TA的回答
知道答主
回答量:114
采纳率:50%
帮助的人:116万
展开全部
就一个n阶的矩阵 1矩阵的秩小于n,那么这个矩阵不可逆,反之可逆 2矩阵行列式的值为0,那么这个矩阵不可逆,反之可逆 3,对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆 4,对于非齐次线性方程AX=b,若方程只有特解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆 总之可逆就是说矩阵是非退化的,是满秩的,判定有很多种 比较活,掌握概念自己会运用就好了
秒懂百科
2021-01-15 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.3亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式