展开全部
cosa=1/1/√[1 + (z'x)^2 + (z'y)^2],其中z=f(x,y)
所以最后结果是上式
若投影到yoz平面
那么dS* - f'x/√[1 + (f'x)^2 + (f'y)^2]=dydz
若投影到xoz平面
那么dS*- f'y/√[1 + (f'x)^2 + (f'y)^2]=dxdz
扩展资料
曲面积分的物理背景为流量的计算问题,设某流体的流速为v=((P(x、y、z),Q(x、y、z),R(x、y、z))从某双侧曲面S的一侧流向另一侧,求单位时间内流经该曲面的流量。
对于曲面积分,积分曲面为u(x、y、z)=0,如果将函数u(x、y、z)=0中的x、y、z换成y、,x后,u(y、z、x)仍等于0,即u(y、z、x)=0。
也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x、y、z)dS=∫∫f(y、z、x)dS;如果将函数u(x、y、z)=0中的x、y、z换成y、x,、后,u(y、x、z)=0。
由于是有向曲面,设它的单位法向量为n=(coα,cosβ,cosγ),取曲面面积微元dS,则所求的单位时间内流量微元就是dE=(v·n)dS,若记有向曲面向量微元为dS=ndS,则dE=v·dS。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
∑xoy的方程是z=0,所以dydz=0(yoz面上的投影不是区域,只是一条线)。例如:cosa=1/1/√[1 + (z'x)^2 + (z'y)^2],其中z=f(x,y)所以最后结果是上式若投影到zhiyoz平面那么d...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
dxdy是dS在xoy平面的投影,设dS的平面与xoy平面呈夹角a
那么dS*cosa=dxdy
cosa就是方向余弦,其求法是
找垂直于对应曲面的向量,即法向量,然后除以该法向量的长度,得单位法向量,就是方向余弦
求得cosa=1/1/√[1 + (z'x)^2 + (z'y)^2],其中z=f(x,y)
所以最后结果是上式
若投影到yoz平面
那么dS* - f'x/√[1 + (f'x)^2 + (f'y)^2]=dydz
若投影到xoz平面
那么dS*- f'y/√[1 + (f'x)^2 + (f'y)^2]=dxdz
望采纳
那么dS*cosa=dxdy
cosa就是方向余弦,其求法是
找垂直于对应曲面的向量,即法向量,然后除以该法向量的长度,得单位法向量,就是方向余弦
求得cosa=1/1/√[1 + (z'x)^2 + (z'y)^2],其中z=f(x,y)
所以最后结果是上式
若投影到yoz平面
那么dS* - f'x/√[1 + (f'x)^2 + (f'y)^2]=dydz
若投影到xoz平面
那么dS*- f'y/√[1 + (f'x)^2 + (f'y)^2]=dxdz
望采纳
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询